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Chapter 3

(5.1) As a special case of the successive maxima Markov chain whose transition probabilities are given in equation (5.5), consider
the Markov chain whose transition probability matrix is given by

P =

0 1 2 3
0 a0 a1 a2 a3
1 0 a0 + a1 a2 a3
2 0 0 a0 + a1 + a2 a3
3 0 0 0 1

Starting in state 0, show that the mean time until absorption is v0 = 1/a3

Solution: By first step analysis, let T = min{n ≥ 0;Xn = 3} and vi = E[T |X0 = i] for i = 0, 1, 2. Note that
v3 = 0, since the expected time to reach the absorbing state given that we are already there in the first time is 0. As
usual, we setup the equations:

v0 = 1 + a0v0 + a1v1 + a2v2 + a3v3
v1 = 1 + 0 · v0 + (a0 + a1)v1 + a2v2 + a3v3
v2 = 1 + 0 · v0 + 0 · v1 + (a0 + a1 + a2)v2 + a3v3

As usual, we add 1 to each equation because we expected to take at least one more step before reaching the absorption
state. Now, simplifying the equations and using the fact that v3 = 0:

v0 = 1 + a0v0 + a1v1 + a2v2
v1 = 1 + (a0 + a1)v1 + a2v2
v2 = 1 + (a0 + a1 + a2)v2 =⇒ [1− (a0 + a1 + a2)]v2 = 1 =⇒ v2 = 1

1−(a0+a1+a2)

Replacing v2 into v1:

v1 = 1 + (a0 + a1)v1 +
a2

1−(a0+a1+a2)
=⇒ [1− (a0 + a1)]v1 = 1−(a0+a1)

1−(a0+a1+a2)
=⇒ v1 = 1

1−(a0+a1+a2)

Replacing v1 into v0:

v0 = 1 + a0v0 +
a1

1−(a0+a1+a2)
+ a2

1−(a0+a1+a2)
=⇒ [1− a0]v0 = 1 + a1+a2

1−(a0+a1+a2)
= 1−a0

1−(a0+a1+a2)
=⇒ v0 = 1

1−(a0+a1+a2)

Since each row of the Markov chain must add up to one (probability distribution), we have that a0 + a1 + a2 + a3 = 1 =⇒
a3 = 1− (a0 + a1 + a2). Replacing this value in v0, we get:

v0 =
1

a3

(5.2) A component of a computer has an active life, measured in discrete units, that is a random variable T , where Pr{T =
k} = ak for k = 1, 2, . . . Suppose one starts with a fresh component, and each component is replaced by a new component
upon failure. Let Xn be the age of the component in service at time n. Then {Xn} is a success runs Markov chain.

a) Specify the probabilities pi and qi.
b) A "planned replacement" policy calls for replacing the component upon its failure or upon its reaching age N ,

whichever occurs first. Specify the success runs probabilities pi and qi under the planned replacement policy.

Solution:

a) Let pi = Pi,0 = the probability of the component in service failing given that it has age i. Then, we can compute pi
as a conditional probability that the age of the component is exactly i + 1 (and thus, it will have to be replaced in
the next time period) given that it has age i. These probabilities are given by the random variable T , and so we can
write:

pi = Pi,0 = Pr{component with age i fails} = Pr{component with age i has a life of i units} = Pr{T = i+1|T ≥ i+1}
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Now we can compute this probability:

Pr{T = i+ 1, T ≥ i+ 1}
Pr{T ≥ i}

=
Pr{T = i+ 1}
Pr{T ≥ i+ 1}

since the event T = i+ 1 is a subset of T ≥ i+ 1

=
ai+1

Pr{T = i+ 1 OR T = i+ 2 OR · · · }
by definition of T

=
ai+1

Pr{T = i+ 1}+ Pr{T = i+ 2}+ · · ·
disjoint events

=
ai+1

ai+1 + ai+2 + · · ·
by definition of T

Therefore: pi =
ai+1

ai+1 + ai+2 + · · ·
. Finally, qi is the complement of pi, i.e., qi = probability of the component

in service lasts one more time period given that it has age i. This is easily computed by rules of probability:

qi = 1− pi = 1− ai+1

ai+1 + ai+2 + · · ·
.

b) Given the "planned replacement" policy, our Markov chain can be modeled with N states (states 0 up to N − 1) as
follow:

P =

0 1 2 3 4 · · · N − 1
0 p0 q0 0 0 0 · · · 0
1 p1 0 q1 0 0 · · · 0
2 p2 0 0 q2 0 · · · 0
3 p3 0 0 0 q3 · · · 0
...

...
...

...
...

...
...

N − 2 pN−2 0 0 0 0 · · · qN−2

N − 1 1 0 0 0 0 · · · 0

So, we truncate the success runs Markov chain to allow up to N states. Once in state N − 1 we must replace the
component in service, even if it is still working, and hence we go from state N − 1 to state 0 deterministically, i.e.,
PN−1,0 = 1. Note also that pi + qi = 1 for i = 0, 1, . . . , N − 2. Assuming the same distribution for the random
variable T , the values of pi and qi for i = 0, 1, . . . , N − 1 are the same as those in a).

(5.4) Martha has a fair die with the usual six sides. She throws the die and records the number. She throws the die again and
adds the second number to the first. She repeats this until the cumulative sum of all the tosses first exceeds 10. What is
the probability that she stops at a cumulative sum of 13?

Solution: Consider the partial sums Markov Chain with states 0, 1, 2, . . . , 16 with transition probability:

P =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0 0 0 0 0
1 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0 0 0 0
2 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0 0 0
...

...
10 0 0 0 0 0 0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6
11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
...

...
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

This chain models the game played by Martha. Note that states 11 through 16 are absorbing since the game ends when
the cumulative sum of all tosses first exceeds 10. Moreover, for states 0 through 10, we can only move in increments of 1
through 6 corresponding to tosses of the dice, all with equal probability 1/6.
Now, let us perform first step analysis. As usual, let T = min{n ≥ 0; 11 ≤ Xn ≤ 16}, i.e., absorbing time, and let
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ui = Pr{XT = 13|X0 = i} for i = 0, 1, . . . , 10. Then, u13 = 1 and uj = 0 for j ∈ {11, 12, 14, 15, 16}. From this setup we
obtaining the equations:

ui =

i+6∑
j=i+1

1

6
uj , for i = 0, 1, . . . , 10

We can solve this simultaneous system by back substituting from the last equation to the first:

u10 =
16∑

j=11

1
6uj = 1

6u11 + 1
6u12 + 1

6u13 + 1
6u14 + 1

6u15 + 1
6u16 = 1

6 0 + 1
6 0 + 1

6 1 + 1
6 0 + 1

6 0 + 1
6 0 = 1

6

u9 =
15∑

j=10

1
6uj = 1

6u10 + 1
6u11 + 1

6u12 + 1
6u13 + 1

6u14 + 1
6u15 = 1

6
1
6 + 1

6 0 + 1
6 0 + 1

6 1 + 1
6 0 + 1

6 0 = 1
36 + 1

6 = 7
36

u8 =
14∑
j=9

1
6uj = 1

6u9 + 1
6u10 + 1

6u11 + 1
6u12 + 1

6u13 + 1
6u14 = 1

6
7
36 + 1

6
1
6 + 1

6 0 + 1
6 0 + 1

6 1 + 1
6 0 = 7

216 + 1
36 + 1

6 = 7+6+36
216 = 49

216

u7 =
13∑
j=8

1
6uj = 1

6u8 + 1
6u9 + 1

6u10 + 1
6u11 + 1

6u12 + 1
6u13 = 1

6
49
216 + 1

6
7
36 + 1

6
1
6 + 1

6 0 + 1
6 0 + 1

6 1 = 49
1296 + 7

216 + 1
36 + 1

6 = 49+42+36+216
1296 = 343

1296

u6 =
12∑
j=7

1
6uj = 1

6u7 + 1
6u8 + 1

6u9 + 1
6u10 + 1

6u11 + 1
6u12 = 1

6
343
1296 + 1

6
49
216 + 1

6
7
36 + 1

6
1
6 + 1

6 0 + 1
6 0 = 343

7776 + 49
1296 + 7

216 + 1
36 = 343+294+252+216

7776 = 1105
7776

u5 =
11∑
j=6

1
6uj = 1

6
1105
7776 + 1

6
343
1296 + 1

6
49
216 + 1

6
7
36 + 1

6
1
6 + 1

6 0 = 1105
46656 + 343

7776 + 49
1296 + 7

216 + 1
36 = 1105+2058+1764+1512+1296

46656 = 7735
46656

u4 =
10∑
j=5

1
6uj = 1

6
7735
46656 + 1

6
1105
7776 + 1

6
343
1296 + 1

6
49
216 + 1

6
7
36 + 1

6
1
6 = 7735

279936 + 1105
46656 + 343

7776 + 49
1296 + 7

216 + 1
36 = 7735+6630+12348+10584+9072+7776

279936 = 54145
279936

u3 =
9∑

j=4

1
6uj = 1

6
54145
279936 + 1

6
7735
46656 + 1

6
1105
7776 + 1

6
343
1296 + 1

6
49
216 + 1

6
7
36 = 54145

1679616 + 7735
279936 + 1105

46656 + 343
7776 + 49

1296 + 7
216 = 54145+46410+39780+74088+63504+54432

1679616 = 332359
1679616

u2 =
8∑

j=3

1
6uj = 1

6
332359
1679616 + 1

6
54145
279936 + 1

6
7735
46656 + 1

6
1105
7776 + 1

6
343
1296 + 1

6
49
216 = 332359

10077696 + 54145
1679616 + 7735

279936 + 1105
46656 + 343

7776 + 49
1296

= 332359+324870+278460+238680+444528+381024
10077696 = 1999921

10077696

u1 =
7∑

j=2

1
6uj = 1

6
1999921
10077696 + 1

6
332359
1679616 + 1

6
54145
279936 + 1

6
7735
46656 + 1

6
1105
7776 + 1

6
343
1296 = 1999921

60466176 + 332359
10077696 + 54145

1679616 + 7735
279936 + 1105

46656 + 343
7776

= 1999921+1994154+1949220+1670760+1432080+2667168
60466176 = 11713303

60466176

u0 =
6∑

j=1

1
6uj = 1

6
11713303
60466176 + 1

6
1999921
10077696 + 1

6
332359
1679616 + 1

6
54145
279936 + 1

6
7735
46656 + 1

6
1105
7776 = 11713303

362797056 + 1999921
60466176 + 332359

10077696 + 54145
1679616 + 7735

279936 + 1105
46656

= 11713303+11999526+11964924+11695320+10024560+8592480
362797056 = 65990113

362797056

Hence, there is a u0 =
65990113

362797056
= 0.1818926364165420 probability that Martha stops at a cumulative sum of 13.

(6.1) Consider the random walk Markov chain whose transition probability matrix is given by

P =

0 1 2 3
0 1 0 0 0
1 0.3 0 0.7 0
2 0 0.1 0 0.9
3 0 0 0 1

Starting in state 1, determine the mean time until absorption.

Solution: By first step analysis, let T = min{n ≥ 0;Xn = 0 or Xn = 3} and vi = E[T |X0 = i] for i = 1, 2. Note
that, v0 = v3 = 0 (already absorbed). We can find v1 by solving the system:

v1 = 1 + 0.3v0 + 0v1 + 0.7v2 + 0v3
v2 = 1 + 0v0 + 0.1v1 + 0v2 + 0.9v3

As usual, a one guarantees we will take at least one more step towards absorption. We can simplify these equations:

v1 = 1 + 0.7v2
v2 = 1 + 0.1v1

Replacing the second equation into the first: v1 = 1+0.7(1+0.1v1) = 1+0.7+0.07v1 =⇒ (1−0.07)v1 = 1.7 =⇒ v1 = 1.7
0.93 ,

and thus,

v1 =
170

93

(6.2) Consider the Markov chain {Xn} whose transition matrix is

P =

0 1 2 3
0 α 0 β 0
1 α 0 0 β
2 α β 0 0
3 0 0 0 1
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where α > 0, β > 0, and α + β = 1. Determine the mean time to reach state 3 starting from state 0. That is, find
E[T |X0 = 0], where T = min{n ≥ 0;Xn = 3}

Solution: By first step analysis, let vi = E[T |X0 = i] for i = 0, 1, 2. Note that v3 = 0 (already absorbed). Then,

v0 = 1 + αv0 + 0v1 + βv2 + 0v3
v1 = 1 + αv0 + 0v1 + 0v2 + βv3
v2 = 1 + αv0 + βv1 + 0v2 + 0v3

As usual, a one guarantees we will take at least one more step towards absorption. We can simplify these equations:

v0 = 1 + αv0 + βv2
v1 = 1 + αv0
v2 = 1 + αv0 + βv1

Replacing v1 into v2:
v2 = 1 + αv0 + β[1 + αv0] =⇒ v2 = 1 + β + [α+ αβ]v0

Replacing v2 into v0:
v0 = 1 + αv0 + β(1 + β + [α+ αβ]v0)

Finally, we can solve for v0:

v0 = 1 + αv0 + β(1 + β + [α+ αβ]v0)
= 1 + αv0 + β + β2 + αβv0 + αβ2v0)
= 1 + β + β2 + [α+ αβ + αβ2]v0

=⇒
v0 = 1+β+β2

1−α−αβ−αβ2

= 1+β+β2

β−αβ−αβ2 since 1− α = β

= 1+β+β2

β(1−α−αβ) grouping β

= 1+β+β2

β(β−αβ) since 1− α = β

= 1+β+β2

β2(1−α) grouping β

= 1+β+β2

β3 since 1− α = β

Hence v0 =
1 + β + β2

β3
, where 0 < β < 1. Note that this result makes sense: if β is very close to 1, then v0 is very close

to 3, i.e., the mean time is close to 3, which would be going from state 0 to state 1 to state 2 and finally to 3. If β is very
small, then it could take an arbitrarily large mean time to reach state 3.
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